
The CDF Run II Event Data Model

presented by Robert D. Kennedy
for the CDF Event Data Model Working Group

CHEP 2000 (Padova, Italy), short talk C201

http://www-cdf.fnal.gov/upgrades/computing/projects/edm/edm.html

Why a New Event Data Model? Run I EDM was successful, but....

Introduction to Run II EDM: EventRecord, StorableObjects

ROOT Object I/O: How do we use it for analysis, on farms?

Status and Future Work: Core new EDM done, Off-line adapted. 

time permitting
More Components: Links, StorableContainers, StorableBanks
Fortran-77 Support: Banks transformed to/from StorableBanks
Sample Use-Cases: The look and feel of code in new EDM

Event Data Model: Manages reading/writing of events to/from
                 data files, and manages access to objects in an event.

Data Handling System: Manages file repository, delivers files.

Framework: Directs execution/configuration of software modules.



The CDF Run II EDM
Robert D. Kennedy

CHEP 2000, talk C201
page 2

Why a New Event Data Model?

CDF Run I EDM: Data were stored in YBOS/Trybos banks.
Banks labelled by 4 character name and by a number assigned
by user. Event record was a global array storing YBOS banks,
YBOS internals, and (for F77 code) temporary work space.

Common Usage: User gets an array index for first bank with
name == "MUON", and uses index plus offsets (defined in F77
include file) to access fields in MUON bank. Then, the user gets
the array index to the next bank with same name.

Problems: Corruption of event array when writing with wrong
offsets, change of an associated object without updating the
dependent objects, bank numbers re-used (object’s history?),
discomfort using banks led to widespread use of common blocks.

Contemporary Trends: More and more of CDF Off-line code is
written in Object-Oriented C++ using a C++ re-implementation
of YBOS, but which still only supports YBOS-format banks. 

Decision to Use ROOT Object I/O: After an exhaustive review,
ROOT Object I/O was selected to implement event data storage.

The Run I Event Data Model was a success, but...:
We thought we could do better, support more general C++
objects, and still not discard existing code and data files.

Run II EDM Goals and Constraints

Retain as much existing C++ code as possible.
Retain ability to read existing data files.
Improve reproducibility, manageability, ....
Support more general C++ objects in event.
Use ROOT Object I/O for persistence.

�
�
�
�
�



EventRecord and StorableObjects (1)

The CDF Run II EDM
Robert D. Kennedy

CHEP 2000, talk C201
page 3

� All data passed from module to module is
passed via an instance of the class EventRecord.
No singletons or globals may be used to pass event data.
Not enforced in Run I. Some exceptions in Simulation software.

� Objects derived from class StorableObject
can be stored in the event record.
The event is an STL-based container of StorableObject pointers.

� Storable objects must be allocated on the heap
and referred to using instances of Handle classes.
A Handle is a smart pointer class, used to avoid data copies.

� Storable object classes must implement a few
methods, such as Streamer(), which perform
serialization and such tasks involved in event I/O.
� Storable object classes must be parsable by
rootcint, and yield a valid I/O dictionary entry.
StorableObject is derived from ROOT’s TObject, but adds some
CDF-specific protocol. The C++ header and a simple "linkdef"
text file for each class are used to drive rootcint.

� Objects are assigned an object id by the event
when stored, and then become read-only.
Big change from Run I which affects some existing software.
Each object is "frozen" in record, preserving its history and
the validity of associations of other objects to it.



EventRecord and StorableObjects (2)

The CDF Run II EDM
Robert D. Kennedy

CHEP 2000, talk C201
page 4

� Users cannot delete objects in the event
record. They can only classify the object as
being desirable or undesirable for output.
This ban on object deletion is new, but the use of I/O "keep" and
"drop" lists is not. This does affect some existing algorithms.

� The creating module (and its parameters) of
an object is recorded in an "rcp id" in the object.
Rcp id is used to get module meta-data from an RCP database.
The RCP system is not yet integrated with the new EDM code.

� Users can search for objects in the event by
class name, object id, rcp id, a user-defined
descriptive string field, or boolean combinations.
Iterators over objects in event remember the specified selection
criteria. STL-like style can be used for loops over objects.

� A StreamableObject class does not satisfy the
criteria of a StorableObject class, but does define
a Streamer() method. These objects can only be
stored in an event indirectly if they are contained
by an instance of a valid StorableObject class.
Some StreamableObject classes choose to be small non-virtual
classes not deriving from StorableObject, such as an id class.
In other cases, rootcint cannot parse the class properly, such as
template-based homogenous container classes. In any case, some
storable object must know to call their Streamer() inside its own.



Use of ROOT Object I/O in Analysis

The CDF Run II EDM
Robert D. Kennedy

CHEP 2000, talk C201
page 5

� ROOT supplies I/O facility for user-defined
objects which preserves the class/type of objects.
To read an object, ROOT first reads the class name and locates an
entry containing pointers to that class’s methods in ROOT’s I/O
dictionary. ROOT constructs an instance of the object, deserializes
the object from disk using its Streamer(), and returns a pointer to
the restored object which the EDM puts into event’s object list.

� CDF’s sequential access-oriented data file
class, SeqRootDiskFile, models all event data in
one ROOT TBranch in one ROOT TTree.
We nominally access all event data during event reconstruction,
so there is limited advantage to storing events in many branches
at this stage of processing. We do not yet support random access
of events in a sequential data file. Also, users must use disk files
for all direct I/O. The Data Handling system provides tape access.

� Objects are stored as a whole. Individual data
members are not stored in separate branches.
CDF plans to exploit multi-branch data files in the future for
secondary and tertiary data sets. The use patterns of different
categories of physics studies will guide how classes will be
assigned to the O(10) branches we might use. Different physics
groups will independently define and record this assignment.

� Object browsing is a low priority. Some
support will eventually be integrated into EDM.



Use of ROOT Object I/O on Farms

The CDF Run II EDM
Robert D. Kennedy

CHEP 2000, talk C201
page 6

� An event may also serialize itself into a user-
allocated buffer for transport as a BLOB, and
can later be deserialized from that BLOB.
On computing farms, we often ship events from one process to
another without the processes needing access to the data inside
the event. We wish to avoid the overhead of serializing and
deserializing events repeatedly. We re-use the serialization
protocol in EventRecord::Streamer() with a buffer of our own
making, rather than one tied to the ROOT Object I/O system.

� A serialized event is capable of reading/writing
itself in the same TTree/TBranch model as a
SeqRoot event, one buffer for each branch.
This capability is waiting for an extension by the ROOT team.
This would permit us, for instance, to transfer serialized raw
data events over the network, and then write them to disk in
the same format as events read/written in analysis without the
overhead of fully deserializing the event in the receiving process.

Message
Header

Trigger Bits

Event
BLOB

On-Line
(Level3)
Trigger
System

serialize()

Event
Display

Data
Logger

deserialize()

write(buffer)
SeqRoot

Event
on Disk

Programs look
at Trigger Bits

but not at event data in BLOB

{



Status and Future Work

The CDF Run II EDM
Robert D. Kennedy

CHEP 2000, talk C201
page 7

� All of the core components of the CDF Run II
Event Data Model have been implemented.
Though some classes are not yet fully optimized, all pieces exist
to access event data in a reconstruction or analysis program.

� All Off-line event reconstruction code has been
adapted to use the CDF Run II EDM.
Tracking consumes about 40% less CPU in new EDM than in old...
no more unpacking to common blocks. Some Simulation, On-Line
code has not been adapted yet, as well as much user analysis code.

� CDF has completed its first Mock Data
Challenge using the CDF Run II EDM.
Simulated events were read by the high-level on-line triggering
system, selected, sent to reconstruction farms, reconstructed,
and split into analyzable sub-samples. All code used the new EDM.

� But, more work to be done on the EDM.
As more users use the new EDM in analysis code, we expect to
identify desirable extensions, improve make procedures, etc.
Much work to support multi-branch split-file tertiary data sets....

Tasks for the near future
Optimization: reduce CPU used for I/O, improve memory mgmt
Rubustness: improve error-handling and make procedures, etc.
Adaptation: help in the adaptation of user analysis software
Documentation: complete new user and reference guides



Links, StorableContainers, StorableBanks

The CDF Run II EDM
Robert D. Kennedy

CHEP 2000, talk C201
page 8

� A Link class is a smart pointer class which
can save/restore its state to disk. To work, a
Link must point to a storable object.
A Link is a dual pointer and object identifier. Upon being
streamed out, a Link streams out the oid of the thing to which it
points. Upon being read back in, a Link can restored to its
original state during a post-read phase by searching for the
object pointed to by its oid.

� StorableContainers are a number of streamable
object jackets on STL container classes. Access is
provided to underlying STL container so that STL
iterators and algorithms can be used.
Containers exist for vectors and lists, and for storage by value,
by owning reference, and by non-owning reference. A storable
Track class may contain, for instance, a ValueVector<Hit>, and
a reconstruction module may produce a RefVector<Track>.

� StorableBank is a base class for YBOS banks.
StorableBank is the new EDM analog of the C++ encapsulation
of a YBOS bank, TRY_Generic_Bank. The same basic API is
supported by StorableBank to simplify both the adaptation of
100+ Banks classes to the new EDM and to make efficient the
transformation of Generic Banks to/from StorableBanks.
New EDM equivalents exist for data iteration support for banks
with specific internal data structure, mostly raw data banks.



Fortran-77 Module Support

The CDF Run II EDM
Robert D. Kennedy

CHEP 2000, talk C201
page 9

� A Fortran-77 module will still operate if
it only inputs and outputs Banks (no globals).
The module requires some wrappering in order to cause the
storable banks in a new EDM event to be transformed into and
back from a YBOS global array of banks. This process weakens
some aspects of the new EDM since there is no way to prevent
Fortran-77 modules from modifying existing banks and so on.

AC++ Job
(progress --->)

YBOS

memory

F77

Edm

C++

{Internals}

CMUO_StorableBank

...

...

F77

Sequential
ROOT
data file

{Internals}

"CMUO" Bank

...

...
Event := Contiguous

Integer Array
Event := STL-like

Container of Handles

I/O
In

C++ I/O
Out

Edm::EventRecord Global IW()

memory

Sequential
ROOT

data file

transform at module boundaries
all StorableBanks to/from YBOS Banks.

All other objects are not touched.



Sample Use-Cases

The CDF Run II EDM
Robert D. Kennedy

CHEP 2000, talk C201
page 10

� Create a ToyTrack and ToyMuon object
// Create a track and a muon, setup track

Handle<ToyTrack> wtrk(new ToyTrack) ; 

Handle<ToyMuon>  wmuon(new ToyMuon) ; 

wtrk->set_track_id(1) ; 

wtrk->set_algorithm_name("Fake-by-hand") ; 

wtrk->set_chisqr(10.0) ; 

wtrk->set_nhits(151) ; 

// Add the track to the event

GenConstHandle rtrk = p_event->append(wtrk) ;

// setup muon with link to this track

wmuon->set_em_charge(+1) ; 

wmuon->set_4momentum(1.0, 2.0, 3.0, 4.0) ; 

wmuon->set_intercept(0.1, 0.2, 0.3) ; 

Link<ToyTrack> track_link(rtrk) ; 

wmuon->set_track_link(track_link) ; 

// Add muon to the event

GenConstHandle rmuon = p_event->append(wmuon) ; 

� To update or revise an object in the event:
Initialize a newly allocated object with one from the event.
Modify the new object and append it to the event.
Non-owning reference lists can help avoid some excessive copies.

� To "delete" an object from the event:
User can add object id to "drop" list. The event output method
consults this list before outputting each object in the event.


